

Mark Scheme (Results)

June 2016

Pearson Edexcel International GCSE Mathematics B (4MB0) Paper 02

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 4MB0_02_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners
 must mark the first candidate in exactly the same way as they
 mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
 - o M marks: method marks
 - o A marks: accuracy marks
 - B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
 - o cao correct answer only
 - o ft follow through
 - o isw ignore subsequent working
 - o SC special case
 - o oe or equivalent (and appropriate)
 - o dep dependent
 - o indep independent
 - o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GCSE Maths

Apart from question 15 (where the mark scheme states otherwise) the correct answer, unless obtained from an incorrect method, should be taken to imply a correct method.

Q	Working	Answer	Mark	Notes
1 a	550×1.852		2	M1
		1019 (km/h) (1018.6)		A1
ь	$\frac{500}{1.852}$ (o.e.)		2	M1
		270 (knots) (269.978)		A1
				Total 4 marks

2	$(\mathbf{AB}) = \begin{pmatrix} -8 & -1 \\ 14 & 2 \end{pmatrix}$	5	B2 (-1ee)
			M1
	$\begin{pmatrix} -12 & -8 \\ 20 & 12 \end{pmatrix}$		A1
	(at least one term correct)		
	OR		
	at least one correct		
	equation in λ		
	$\lambda = 4$		A1 no incorrect working seen
			Total 5 marks

3 a	8	4	5	B1
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		8 - x, $13 - x$, $7 - x$		B1
		16, 13, 9		B1
bi	Equating all their terms, from their diagram, (at least 7 terms) to 60 (o.e.)			M1
bii	x = 5			A1
				Total 5 marks

4 a	-1 = a + b (o.e.)		1	B1	$accept -1 = a \times 1^2 + b$
b	23 = 9a + b (o.e.)		1	B1	accept $23 = a \times 3^2 + b$
С	attempt to eliminate either a or b (allow one slip)		3	M1	
		a = 3, $b = -4$		A1	
				A1	
d	$f(x) \ge "-4"$		2	B1 ft	This could be in the form
	Critical value identified "-4" in a range statement				$-4 \le x \le 3$
	A correct mathematical statement (Accept: $f(x) \ge "-4"$, $y \ge "-4"$, $["-4", \infty)$, $\{x : f(x) \ge "-4"\}$			B1 ft	Accept strong inequality at infinity
					Total 7 marks

5 a Seeing a mid-class value 4 B1 One correct fx/100 OR a completely correct numerator $5 \times 10 + 25 \times 30 + 33 \times 45 + 22 \times 55 + 15 \times 75$ M1 M1 46.2 (km/h) (accept 46 from correct working) A1 b 22+15 seen 2 B1 Tolor (0.37, 37%) B1 C Heights of 1, 13.2, 8.8 and 2 and B1, 8.8 and 2 and B1, 10.1			1	1	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 a		Seeing a mid-class	4	B1	
One correct $fx/100$ OR a completely correct numerator $\frac{5\times10+25\times30+33\times45+22\times55+15\times75}{100}$ $\left(=\frac{4620}{100}\right)$ M1 $\frac{46.2 \text{ (km/h) (accept working)}}{46 \text{ from correct working)}}$ b $\frac{37}{100} \text{ (0.37, 37\%)}$ B1 c $\frac{37}{100} \text{ (0.37, 37\%)}$ Heights of 1, 13.2, $\frac{37}{100} \text{ (0.37, 37\%)}$ B1, Tolerance of $\pm 1/2$ small square $\frac{37}{100} \text{ (0.37, 37\%)}$			_			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	varue			
a completely correct numerator $\frac{5 \times 10 + 25 \times 30 + 33 \times 45 + 22 \times 55 + 15 \times 75}{1000}$ $\left(= \frac{4620}{100} \right)$ $\frac{46.2 \text{ (km/h) (accept 46 from correct working)}}{46 \text{ from correct working)}}$ $\frac{37}{100} \text{ (0.37, 37\%)}$		One correct $fx/100$			MI	
a completely correct numerator $\frac{5 \times 10 + 25 \times 30 + 33 \times 45 + 22 \times 55 + 15 \times 75}{1000}$ $\left(= \frac{4620}{100} \right)$ $\frac{46.2 \text{ (km/h) (accept 46 from correct working)}}{46 \text{ from correct working)}}$ $\frac{37}{100} \text{ (0.37, 37\%)}$		OR				
$\frac{5 \times 10 + 25 \times 30 + 33 \times 45 + 22 \times 55 + 15 \times 75}{100}$ $\left(= \frac{4620}{100} \right)$ $\frac{46.2 \text{ (km/h) (accept 46 from correct working)}}{46 \text{ from correct working)}}$ $\frac{37}{100} \text{ (0.37, 37\%)}$		a completely correct numerator				
					3.61	
		$5 \times 10 + 25 \times 30 + 33 \times 45 + 22 \times 55 + 15 \times 75$			MH	
		100				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\left $				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\left(\begin{array}{c} -100 \end{array}\right)$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		()	4620 1111		A 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					ΑI	
b $22+15 \text{ seen}$ 2 B1 $\frac{37}{100} (0.37, 37\%)$ B1 c Heights of 1, 13.2, 8.8 and 2 and B1, Tolerance of $\pm 1/2$ small square			46 from correct			
b $22+15 \text{ seen}$ 2 B1 $\frac{37}{100} (0.37, 37\%)$ B1 c Heights of 1, 13.2, 8.8 and 2 and B1, Tolerance of $\pm 1/2$ small square			working)			
$\frac{37}{100} \text{ (0.37, 37\%)} \qquad \qquad \text{B1}$ c \text{Heights of 1, 13.2, } 4 \text{B1, Tolerance of \$\pm 1/2\$ small square \$ 8.8\$ and 2 and \text{B1,}	1,			2	D1	
c Heights of 1, 13.2, 4 B1, Tolerance of $\pm 1/2$ small square 8.8 and 2 and B1,	D		22+13 seen	2	DI	
$\frac{100}{100} \begin{array}{c} (0.37, 37\%) \\ \text{Heights of 1, 13.2,} \\ 8.8 \text{ and 2 and} \end{array} \begin{array}{c} \text{B1,} \text{Tolerance of } \pm 1/2 \text{ small square} \\ \text{B1,} \end{array}$						
c Heights of 1, 13.2, 4 B1, Tolerance of $\pm 1/2$ small square 8.8 and 2 and B1,			37		B1	
The second region of the second region region of the second region regi			$\frac{100}{100}$ (0.37, 37%)			
8.8 and 2 and B1,						
	c		Heights of 1, 13.2,	4	B1,	Tolerance of $\pm 1/2$ small square
			8.8 and 2 and		B1.	•
I correct widths RI			correct widths		B1,	
			correct widths			
B1					BI	
Total 10 mar						Total 10 marks

		(x-1)		Total 5 marks
		$\frac{(x+7)(x-1)}{\frac{(x-4)}{(x-1)}}$		A1 Do not isw
		(x+7)(x-1)		A1
	(x+3+4)(x+3-4) (one error)			
	OR			
	$x^2 + 6x + 9 - 16$ (one error)			M1 ind
		(x+7)(x-4)		A1
6	attempt to factorise $x^2 + 3x - 28$		5	M1

0.00	4	B1
80° (opposite angles of cyclic quadrilateral)	•	B1
62° (1)		B1
02 (alternate segment)		B1
$/AOF = 124^{\circ}$ (and at the centur)	4	B1
ZAOE – 124 (angle at the centre)		B1
$\angle OAF = \frac{180 - 124}{\text{(isosceles triangle)}}$		B1
2 (isoscetes triangle)		B1
conclusion (last mark lost if no conclusion)		
ALT 1		
$\angle ADE = 62^{\circ}$ and $\angle DEA = 90^{\circ}$		B1
`		B1
semi-circle)		7.4
$\angle DAE = 180^{\circ} - (62^{\circ} + 90^{\circ})$		B1
Reason: Angle sum of triangle		B1
ALT 2		
$\angle ACD = 90^{\circ}$ and $\angle ECD = 28^{\circ}$		B1
One reason (i.e. angle in a semi-circle)		B1
$\angle DAE = 28^{\circ}$		B1
Reason: Angles in same segment		B1
ALT 3		
$\angle OEO/OEP = 90^{\circ}$ (tangent/radius)		B1,
2 (B1
$/OFA = 90^{\circ} - 62$ and $/OAF = 28^{\circ}$		B1
		B1
	ALT 1 $\angle ADE = 62^\circ$ and $\angle DEA = 90^\circ$ One reason (i.e. same segment or angle in a semi-circle) $\angle DAE = 180^\circ - (62^\circ + 90^\circ)$ Reason: Angle sum of triangle Conclusion (last mark lost if no conclusion) ALT 2 $\angle ACD = 90^\circ$ and $\angle ECD = 28^\circ$ One reason (i.e. angle in a semi-circle) $\angle DAE = 28^\circ$ Reason: Angles in same segment	$62^{\circ} \text{ (alternate segment)}$ $\angle AOE = 124^{\circ} \text{ (angle at the centre)}$ $\angle OAE = \frac{180 - 124}{2} \text{ (isosceles triangle)}$ $\text{conclusion (last mark lost if no conclusion)}$ ALT 1 $\angle ADE = 62^{\circ} \text{ and } \angle DEA = 90^{\circ}$ $\text{One reason (i.e. same segment or angle in a semi-circle)}$ $\angle DAE = 180^{\circ} - (62^{\circ} + 90^{\circ})$ $\text{Reason: Angle sum of triangle}$ $\text{Conclusion (last mark lost if no conclusion)}$ ALT 2 $\angle ACD = 90^{\circ} \text{ and } \angle ECD = 28^{\circ}$ $\text{One reason (i.e. angle in a semi-circle)}$ $\angle DAE = 28^{\circ}$ $\text{Reason: Angles in same segment}$ ALT 3 $\angle OEQ/OEP = 90^{\circ} \text{ (tangent/radius)}$ $\angle OEA = 90^{\circ} - 62 \text{ and } \angle OAE = 28^{\circ}$

		Alt 4:		
		$\angle DEA = 90^{\circ}$ (angle in a semicircle)		B1
		· -		B1
		$\angle DEP = 28^{\circ} = (\angle OAE)$ (alternate segment)		B1
		, , , , , , , , , , , , , , , , , , , ,		B1
c	"62"-28 or		2	M1
	180-("80"+28+38)			
		34°		A1
				Total 10 marks

0		5		2	1/1	
8	a	5x.x + 5x(-80) + 192.x + 192(-80)		2	M1	
			$5x^2 - 208x - 15360$ (cwo) (isw)		A1	
	b		480	1	B1	
			\overline{x}			
	С	480		2	M1	
	•	$\frac{480}{x} + 2.5$		_	1,11	
		x	490 : 2.5		A 1	060 - 5
			480 + 2.5x		A1	$(Accept \frac{960+5x}{2x})$
			x			2x
	d		$(x-16)$ " $\left(\frac{480+2.5x}{x}\right)$ " = 544	1	B1	
			(x-16)'' - $ ''=544$		ft	
			` ′			
			(o.e.)			
	e	(x-16)(480+2.5x) = 544x		3	M1	removing denominator(s) in x
			$480x + 2.5x^2 - 7680 - 40x = 544x$		A1	
			$\begin{vmatrix} 460x + 2.3x - 7060 - 40x = 344x \end{vmatrix}$			
			Correct conclusion from cc work		A1	
	f	5.2 200. 152(0 (5102)(90)	3	M1	
	-	$5x^2 - 208x - 15360 = (5x + 192)(x$	[-80]		1,11	
		OR				
		Correct substitution into formula				
			X=80		A2	
			11 00		112	Т-4-112 1
						Total 12 marks

			T		
9	ai		$2\mathbf{a} + \mathbf{b}$	3	B1
	aii		$\frac{5}{4}\mathbf{b}$		B1
	aiii		$\mathbf{a} + "\frac{5}{4}\mathbf{b}"$		B1ft
	b		μ ("2a + b")	1	B1ft
	c		$\mathbf{a} + \lambda \left(\mathbf{a} + \frac{5}{4} \mathbf{b} \right)$	1	B1ft
	d	Equating components of one of a or b .		5	M1
			5 1 . 1		A1
			$2\mu = 1 + \lambda, \mu = \frac{5}{4}\lambda$		A1
			2 5		A1
			$\lambda = \frac{2}{3}, \mu = \frac{5}{6}$		A1
	e	20 "5/6"		2	M1
		$\frac{20}{\text{Area of }ADB} = \frac{"5/6"}{1 - "5/6"}$			
		OR			
		Area $ADB = 20 \times "\frac{6}{5}" - 20$			
	_		4 square units		A1
					Total 12 marks

10	a	360 (720)		2	M1	
		$\frac{360}{5}$ (=72°)				
		OR				
		$(2 \times 5 - 4) \times 90 \ (=540^{\circ})$				
		$180 - \frac{360}{5}$ (=108°) AG			M1 (dep)	
		OR				
		$\frac{(2\times5-4)\times90}{5}$ (=108°) AG				
	b	$AG^2 = 10^2 + 5^2 - 2 \times 10 \times 5 \times \cos"108^\circ"$		3	M1	Penalise incorrect rounding only once in the remainder of the question Only accept 72° for 108 and only
						award marks for Method
		= 125-100cos"108°"			M1	
		- 123-100 cos 106			(dep)	
			AG = 12.5 (12.48606)		A1	
	c	5 _ "12.5"		3	M1	
		$\frac{5}{\sin \angle GAB} = \frac{"12.5"}{\sin"108^{\circ}"}$				
		5×sin"108° "			M1	
		$\sin \angle GAB = \frac{5 \times \sin"108^{\circ}"}{"12.5"}$			(dep)	
		12.5	$\angle GAB = 22.4$		A1	(Accept 22.3)
		Alt:				
		$5^2 = 10^2 + "12.5"^2 - 2 \times 10 \times "12.5" \times \cos \angle GAB$			M1	
		$\cos \angle GAB = \frac{10^2 + "12.5"^2 - 5^2}{2 \times 10 \times "12.5"}$			M1 (dep)	
		2/10/12:0				
					1	

d	$\angle GAF = "108" - 2 \times "22.4" \ \ (=63.2)$		3	M1	
	Area =			M1	
	$\frac{1}{2}$ × "12.5" × "12.5" × sin(108 – 2 × "22.4")			(dep)	
		69.6 cm ²			(Accept 69.5. 69.6, 69.7, 69.8 or 69.9)
e	$\frac{"69.6"}{172} \times 100$	3	3	M1	
	(1 "69.6")			M1	
	$\left(1 - \frac{"69.6"}{172}\right) \times 100 \text{ (o.e.)}$			(dep)	
		59.5%		A1	(Accept 59.4, 59.5 or 59.6)
					Total 14 marks

11 a	 a		h-20	1	B1	
11 "	•		n-20		D 1	
b	b		$V = \frac{1}{3}\pi r^2 ("h - 20")$ (o.e.)	1	B1 ft	
			(o.e.)			
c	2	$V = \frac{1}{3}\pi r^2 (32 - r - 20)$		2	M1	Substituting $32-r$ into their $\frac{1}{3}\pi r^2$ (" $h-20$ ")
			correct conclusion (from completely correct working)		A1	
d	d		43, 85, 67	3	B1, B1, B1	
e			-1 mark for: any straight line segments each point missed (± ½ small square) each missed segment each point incorrectly plotted (± ½ small square) tramlines very poor curve	3	В3	ft from their table values
f	f	y = 80 drawn (can be implied by values)	6.8, 9.1 ($\pm 1/2$) small square	3	M1 A1 A1	

g	$\pi \times "6.8" \times "6.8" \times 20$ or $\pi \times "9.1" \times "9.1" \times 20$		3	M1 For this first M mark, the required expression may be embedded with anything else So, accept $\pi \times "6.8" \times "20 + 80\pi$ (o.e.) or $\pi \times "9.1" \times "9.1" \times 20 + 80\pi$ (o.e.)
	$\pi \times "9.1" \times "9.1" \times 20 - \pi \times "6.8" \times "6.8" \times 20$			M1 For the 2 nd M1 (dep), if embedded (dep) it must be with a correct expression As for the first M mark accept expressions involving 80π
		2300 cm^3 (Accept answers in the range $1900 \rightarrow 2500$)		A1 ft 2300 cm^3 (Accept answers in the range $1900 \rightarrow 2500$)
				Total 16 marks